By Harish Vedantham

The Earth receives its life-sustaining energy from Sunlight, but “explosions” on the Sun can also be life-threatening. Explosions on the Sun’s surface, called flares, can spew out large masses of plasma and harmful radiation towards the planets. Radio telescopes have been instrumental in detecting and studying the physics of solar flares. With an exquisitely sensitive telescope like LOFAR, we can now look for similar radio signatures on other stars to decipher how conducive to life their exoplanets are.

Published by the editorial team, 19 June 2020

This quest reached its first milestone recently with the detection of radio-waves from the star GJ1151 pictured below. The waves carry the predicted signature of a plasma bridge (bluish ribbon in the picture) between the star and its planet.

(credit: Danielle Futselaar)

This is the beginning of an exciting path for LOFAR 2.0. The search for exoplanets is one of the specific science cases that LOFAR 2.0 will be engaged in.

The plasma bridge is just one way that stars influence exoplanets. We expect to detect emission from several phenomena affecting the “space-weather” around exoplanets. With upcoming observations, we also aim to detect the magnetic fields of exoplanets which are their defence mechanism against stellar flares.

A solar flare. (copyright: L. Fletcher)

Latest tweets

Congratulations @SKA_telescope with their new brand✨! We are proud that the Netherlands' investment in the largest radio telescope in the world will generate unique knowledge, employment, activity for our industry and innovation @minocw @ivanengelshoven

Elk jaar op 4 mei herdenken we de slachtoffers die voor onze vrijheid gevochten hebben. In bijgaand filmpje dat vorig jaar gemaakt werd kun je zien hoe onze Westerbork telescopen, net als vandaag, in de jaarlijkse rouwstand gaan: #4mei #Dodenherdenking

We congratulate our colleague Jason Hessels, who also works at ASTRON with this fantastic achievement!🎉

Daily Image of the Week: EUCARA-2021