10 years of LOFAR highlights: LOFAR pioneers new way to study exoplanet environments

With the help of LOFAR, astronomers have been able to indicate the presence of a planet around a red dwarf star and with that, prove a theory that was composed with observations of Jupiter and its moon Io.

Published by the editorial team, 5 June 2020

Red dwarfs have a very strong magnetic field. Due to their relatively small size, a potentially habitable planet needs to be close to the Red Dwarf. Therefore, this planet is exposed to intense magnetic activity, which results in radio emissions. Due to its high sensitivity, LOFAR is able to detect these radio waves.

This video shows how the Red Dwarf and the orbiting planet interact and produce radio waves.

On 12 June 2020, LOFAR celebrates its tenth anniversary. The radio telescope is the world’s largest low frequency instrument and is one of the pathfinders of the Square Kilometre Array (SKA), which is currently being developed. Throughout its ten years of operation, LOFAR has made some amazing discoveries. It has been a key part of groundbreaking research, both in astronomy and engineering. Here we feature some – but definitely not all – of these past highlights, with surely more to come in the future.


Latest tweets

Daily image of the week

On June 13-17, the LOFAR Family Meeting took place in Cologne. After two years LOFAR researchers could finally meet in person again. The meeting brings together LOFAR users and researchers to share new scientific results.

Our renewed ‘Melkwegpad’ (Milky Way Path) is finished! The new signs have texts in Dutch on the one side and in English on the other side. The signs concerning planets have a small, 3D printed model of that planet in their centre.
#Melkwegpad @RTVDrenthe

Daily image of the week

The background drawing shows how the subband correlator calculates the array correlation matrix. In the upper left the 4 UniBoard2s we used. The two ACM plots in the picture show that the phase differences of the visibilities vary from 0 to 360 degrees.

Daily image of the week: Testing with the Dwingeloo Test Station (DTS)
One of the key specifications of LOFAR2.0 is measuring using the low- and the highband antenna at the same time. For this measurement we used 9 lowband antenna and 3 HBA tiles.